domingo, 9 de septiembre de 2018

CÁLCULO.


HISTORIA DEL CÁLCULO.


INTRODUCCIÓN.

El Cálculo constituye una de las grandes conquistas intelectuales de la humanidad. Una vez construido, la historia de la matemática ya no fue igual: la geometría, el álgebra y la aritmética, la trigonometría, se colocaron en una nueva perspectiva teórica. Detrás de cualquier invento, descubrimiento o nueva teoría, existe, indudablemente, la evolución de ideas que hacen posible su nacimiento. Es muy interesante prestar atención en el bagaje de conocimientos que se acumula, desarrolla y evoluciona a través de los años para dar lugar, en algún momento en particular y a través de alguna persona en especial, al nacimiento de una nueva idea, de una nueva teoría, que seguramente se va a convertir en un descubrimiento importante para el estado actual de la ciencia y, por lo tanto, merece el reconocimiento. El Cálculo cristaliza conceptos y métodos que la humanidad estuvo tratando de dominar por más de veinte siglos. Una larga lista de personas trabajó con los métodos "infinitesimales" pero hubo que esperar hasta el siglo XVII para tener la madurez social, científica y matemática que permitiría construir el Cálculo que utilizamos en nuestros días.
Sus aplicaciones son difíciles de cuantificar porque toda la matemática moderna, de una u otra forma, ha recibido su influencia; y las diferentes partes del andamiaje matemático interactúan constantemente con las ciencias naturales y la tecnología moderna.
El cálculo es fundamentalmente diferente de las matemáticas que hayas estudiado con anterioridad. Aunque las matemáticas previas al cálculo también versan sobre velocidades, aceleraciones, rectas tangentes, etc., aquí se tiene una diferencia fundamental entre las matemáticas previas y el propio cálculo: las matemáticas previas al cálculo son más estáticas, en tanto que el cálculo es más dinámico. El cálculo se interesa en el cambio y en el movimiento; trata de cantidades que se aproximan a otras cantidades.



DEFINICIÓN DEL CÁLCULO.


El Cálculo es la matemática del cambio: velocidades y aceleraciones. Cálculo es también la matemática de rectas tangentes, pendientes, áreas, volúmenes, longitudes de arco, centroides, curvaturas y otros diversos conceptos que han hecho que los científicos, ingenieros y economistas puedan modelar situaciones de la vida real. El Cálculo Infinitesimal es la rama de las matemáticas que comprende el estudio y aplicaciones del Cálculo Diferencial e Integral.


ANTECEDENTES DEL CÁLCULO.


Las principales ideas que apuntalan el cálculo se desarrollaron durante un periodo de tiempo muy largo sin duda. Los primeros pasos fueron dados por los matemáticos griegos.
Para los antiguos griegos, los números eran cocientes de enteros así que la recta numérica tenía 'hoyos' en ella. Le dieron la vuelta a esta dificultad usando longitudes, áreas y volúmenes además de números ya que, para los griegos, no todas las longitudes eran números.
 Los orígenes del cálculo se remontan unos 2500 años por lo menos, hasta los antiguos griegos, quienes hallaron áreas aplicando el “método de agotamiento”. Sabían cómo hallar el área A de cualquier polígono al dividirlo en triángulos (método de triangulación), y sumar las áreas de estos triángulos.
El Cálculo Diferencial se origina en el siglo XVII al realizar estudios sobre el movimiento, es decir, al estudiar la velocidad de los cuerpos al caer al vacío ya que cambia de un momento a otro; la velocidad en cada instante debe calcularse teniendo en cuenta la distancia que recorre en un tiempo infinitesimalmente pequeño.


Isaac Newton.


En 1666 Sir Isaac Newton (1642-1727), fue el primero en desarrollar métodos matemáticos para resolver problemas de esta índole. Inventó su propia versión del cálculo para explicar el movimiento de los planetas alrededor del Sol. Newton concibió el llamado Método de las Fluxiones, considerando a la curva como la trayectoria de un punto que fluye; denomina “momentum” de la cantidad de fluente al arco mucho muy corto, recorrido en un tiempo excesivamente pequeño, llamando la “razón del momentum” al tiempo correspondiente, es decir, la velocidad. Por lo tanto, fluente es la cantidad variable que se identifica como función; fluxión es la velocidad o rapidez de variación de la fluente que se identifica como la derivada; al incremento infinitesimal o instantáneo de la fluente se llama momento que se identifica como la diferencial. El principio establece que: “los momentos de las funciones son entre sí como sus derivadas”.


Gottfried Wilhelm Leibniz.

El filósofo y matemático alemán Gottfried Wilhelm Leibniz (1646- 1716), realizó investigaciones similares e ideando símbolos matemáticos que se aplican hasta nuestros días. La concepción de Leibniz se logra al estudiar el problema de las tangentes y su inverso, basándose en el Triángulo Característico de Barrow, observando que dicho triángulo al que se forma con la tangente, la subtangente y la ordenada del punto de tangencia, así mismo, es igual al triángulo formado por la Normal, la Subnormal y la ordenada del mismo punto. Los símbolos dx, dy/dx, la palabra “derivada” y el nombre de “ecuaciones diferenciales” se deben a Leibniz.




CONTRIBUYENTES DEL CÁLCULO DIFERENCIAL.

Pierre Fermat (1601-1665), matemático francés, quien en su obra habla de los métodos diseñados para determinar los máximos y mínimos, acercándose casi al descubrimiento del Cálculo Diferencial, mucho antes que Newton y Leibniz. Dicha obra influenció en Leibniz en la invención del Cálculo Diferencial. Fermat dejó casi todos sus teoremas sin demostrar ya que por aquella época era común entre los matemáticos el plantearse problemas unos a otros, por lo que frecuentemente se ocultaba el método propio de solución, con el fin de reservarse el éxito para sí mismo y para su nación, ya que existía gran rivalidad entre franceses, alemanes e ingleses, razón por la que las demostraciones de Fermat se hayan perdido. Hizo además aportaciones a la geometría analítica, la teoría de números y la probabilidad.
Nicolás Oresme, obispo de la comunidad de Lisieux, Francia, estableció que: en la proximidad del punto de una curva en que la ordenada se considera máxima o mínima, dicha ordenada varía más pausadamente.

Johannes Kepler, tiempo después, coincide con lo establecido por Oresme, conceptos que permitieron a Fermat en su estudio de máximos y mínimos, las tangentes y las cuadraturas, igualar a cero la derivada de la función, debido a que la tangente a la curva en los puntos en que la función tiene su máximo o mínimo, es decir, la función es paralela al eje x donde la pendiente de la tangente es nula.

Isaac Barrow (Londres, 1630 - id., 4 de mayo,1677), maestro de Newton, construyó el “triángulo característico”, en donde la hipotenusa es un arco infinitesimal de curva y sus catetos son incrementos infinitesimales en que difieren las abscisas y las ordenadas de los extremos del arco.

Joseph-Louis Lagrange (1736-1813), quien demostró por primera vez el Teorema del Valor Medio. Se dice que Napoleón dijo de él un día: “Lagrange es la altiva pirámide de las ciencias matemáticas”.

Augustin-Louis Cauchy (París, 21 de agosto de 1789- Sceaux, 23 de mayo de 1857), matemático francés, impulsor del Cálculo Diferencial e Integral, autor de La Teoría de las Funciones de las Variables Complejas, se basó en el método de los límites; las definiciones de “función de función” y la de “función compuesta” se deben a él. El concepto de función continua fue introducido por primera vez por él en 1821.

Leonhard Euler (1707-1783). La simbología f (x) se debe a él, quien además de hacer importantes contribuciones a casi todas las ramas de las matemáticas, fue uno de los primeros en aplicar el cálculo a problemas de la vida real en la Física. Sus extensos escritos publicados incluyen temas como construcción de barcos, acústica, óptica, astronomía, mecánica y magnetismo.

John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703), enuncia el concepto de “límite”.

La representación simbólica “lím” se debe a Simón Lhuilier (n. Ginebra, Suiza el 24 de abril de 1750, f. en Ginebra el 28 de marzo de 1840).

Karl Weierstrass, matemático alemán, se encargó de dar formalidad y estructura a la noción intuitiva de límite.

Peter Gustav Dirichlet (1805-1859) fue quien dio la primera definición moderna de función. Al principio del desarrollo del cálculo, la definición de función era mucho más restringida que en la actualidad, y no se habían considerado funciones como la de Dirichlet.

Jacobo Bernoulli introduce la palabra “función” en el Cálculo Diferencial.


Niels Henrik Abel (1802.1829) y Evariste Galois (1811-1832). Aunque sus vidas fueron breves, sus trabajos en los campos del análisis y del álgebra abstracta fueron de gran alcance.

CONTRIBUYENTES DEL CÁLCULO.
Antes de Cristo

THALES DE MILETO (624-547 a.C.)
PITÁGORAS de SAMOS (580-500 a.C.)
ZENÓN DE ELEA (490-425 a.C.)
PLATÓN (427-347 a.C.)
EUDOXO de CNIDUS (408-355 a.C.): creador del método de exhaución.
ARQUÍMEDES (287-212 a.C.): nativo de Siracusa, Sicilia estudió en Alejandría. Desarrolló métodos infinitesimales. Hizo una de las más significativas contribuciones griegas, utilizó el método de exhaución para encontrar el valor aproximado del área de un círculo.


Siglo XVI

LUCA VALERIO (1552-1618)
SIMON STEVIN (1548-1620)
GALILEO GALILEI (1564-1642)
JOHANNES KEPLER (1571-1630)
RENÉ DESCARTES (1596-1650)
BONAVENTURA CAVALIERI (1598-1647): desarrolló un método
de lo indivisible, el cual llegó a ser un factor en el desarrollo del Cálculo Integral. Su método consiste en comparar proporcionalmente los indivisibles de volúmenes o áreas de cuerpos o figuras por encontrar, con los respectivos indivisibles de figuras o cuerpos cuyas áreas o volúmenes se conocen.


Siglo XVII

PIERRE DE FERMAT (1601-1665): desarrolló métodos ingeniosos y útiles para encontrar máximos y mínimos. Trata de encontrar pruebas más o menos rigurosas de la conjetura de Cavalieri.
GILLES DE ROBERVAL (1602-1675)
EVANGELISTA TORRICELLI (1608-1647): volúmenes generados por la rotación de ciertas curvas. Discípulo de Galileo Galilei.
JOHN WALLIS (1616-1703): tuvo una influencia decisiva en los primeros desarrollos del trabajo matemático de Newton
BLAIS PASCAL (1623 -1662)
CRISTIAN HUYGENS (1629-1695)
ISAAC BARROW (1630-1677)
ISAAC NEWTON (1643-1727)
GOTTFRIED LEIBNIZ (1646-1716)
MICHEL ROLLE (1652-1719)
JACOB BERNOULLI (1654-1705): matemático suizo que se carteaba con frecuencia con Leibniz, acuñó la palabra integral como término del cálculo en el año 1690.
GUILLAUME FRANCOIS ANTOINE MARQUIS L´HOPITAL (1661-1704): escribió el primer libro de cálculo en el año 1696 influenciado por las lecturas que realizaba de sus profesores Bernoulli y Leibniz.
JOHANN BERNOULLI (1667-1748)
BROOK TAYLOR (1685-1731)
COLIN MACLAURIN (1698-1746)


 Siglo XVIII

LEONARD EULER (1707-1783)
THOMAS SIMPSON (1710-1761): sus principales trabajos se refieren a interpolación y métodos numéricos de integración.
ALEXIS CLAUDE CLAIRAUT (1713-1765)
MARIA GAËTANA AGNESI (1718-1799)
JOSEPH LOUIS LAGRANGE (1736-1813)
MARQUÉS DE CONDORCET (1743-1794)
GASPARD MONGE (1746-1818)
PIERRE SIMON DE LAPLACE (1749-1827)
ADRIEN LEGENDRE (1752-1833)
LAZARE CARNOT (1753-1823)
CARL FRIEDRICH GAUSS (1777-1813)
BERNARD BOLZANO (1781-1848)
AGUSTIN-LOUIS CAUCHY (1789-1857): trabajó en la tarea de dar una definición precisa de "función continua".
GEORGE GREEN (1793-1841)


Siglo XIX

NIELS ABEL (1802-1829)
KARL WEIERSTRASS (1815-1897)
GEORGE GABRIEL STOKES (1819-1903)
GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866)
RICHARD DEDEKIND (1831-1916)
JOSIAH WILLARD GIBBS (1839-1903)
GEORG CANTOR (1845-1918)
SOFÍA KOVALEVSKY (1850-1891)
HENRI LÉON LEBESGUE (1875-1941)


Siglo XX

ANDREY NIKOLAEVICH KOLMOGOROV (1903-1987)
JOHN VON NEUMANN (1903-1957)
JEAN ALEXANDRE EUGENÈ DIEUDONNÉ (1906-1992)
NICOLÁS BOURBAKI (1939-1967): seudónimo adoptado por un grupo de matemáticos franceses.